«УТВЕРЖДАЮ»

Директор Федерального бюджетного учреждения науки «Центральный научно- исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

_В.Г. Акимкин

«31» abycoma

2023 г.

ИНСТРУКЦИЯ

по применению тест-системы «SBV» для выявления РНК вируса Шмалленберг методом полимеразной цепной реакции

НАЗНАЧЕНИЕ

Тест-система «SBV» предназначена для выявления РНК вируса Шмалленберг в биологическом материале от животных методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией в режиме «реального времени».

ПРИНЦИП МЕТОДА

Метод выявления РНК вируса Шмалленберг (Schmallenberg virus) основан на экстракции РНК из образцов исследуемого внутреннего материала совместно РНК экзогенного C контрольного образца (ВКО-V), проведении реакции обратной РНК, амплификации полученной транскрипции кДНК гибридизационно-флуоресцентной детекцией продуктов амплификации в режиме «реального времени». позволяет контролировать все этапы ПЦР-исследования для ингибиторов образца оценивать влияние каждого на И результаты ПЦР-исследования.

С полученными на этапе экстракции пробами РНК проводится обратная транскрипция РНК с помощью фермента ревертазы (MMIv) и амплификация участков кДНК при помощи специфичных к этим участкам праймеров и фермента Таqполимеразы.

В составе реакционной смеси присутствуют флуоресцентномеченые олигонуклеотиды, которые гибридизуются с комплементарным участком амплифицируемой кДНК-мишени, в результате чего происходит нарастание интенсивности флуоресценции.

Результаты амплификации регистрируются по следующим каналам флуоресцентной детекции (см. табл. 1):

Таблица 1

Канал для флуорофора	FAM	JOE
кДНК-мишень	кДНК ВКО-V	кДНК Schmallenberg virus

АНАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Для данной тест-системы применимы следующие характеристики:

Аналитическая чувствительность (предел обнаружения, limit of detection, LOD)

Предел обнаружения был определен при использовании комплектов для экстракции РНК «РИБО-преп» и АмплиСенс® МАГНО-сорб-М.

Таблица 2

Вид исследуемого материала	Предел обнаружения, ГЭ/мл ¹
Плазма/сыворотка крови	5x10 ³
Цельная кровь	5x10 ³
Околоплодная жидкость	5x10 ³
Тканевой материал	5x10 ³
Комары/мокрецы	5x10 ³

Данный предел обнаружения достигается при соблюдении правил, указанных в разделе «Порядок отбора и подготовки проб».

Аналитическая специфичность

Аналитическая специфичность тест-системы доказана при исследовании ДНК/РНК следующих микроорганизмов: Bovine adenovirus, Bovine coronavirus, Bovine herpes virus 1, Bovine leukemia virus, Bovine parainfluenza virus 3, Bovine respiratory syncytial virus, Bovine viral diarrhoea virus 1, Bovine viral diarrhoea virus 2, Rotavirus, Schmallenberg virus, Brucella abortus, Brucella melitensis, Campylobacter jejuni, Clostridium perfringens,

¹ Количество геномных эквивалентов (геномов) микроорганизма (ГЭ) в 1 мл образца биологического материала.

Chlamydophila abortus, Chlamydophila pecorum, Escherichia coli, Klebsiella pneumoniae, Leptospira interrogans, Listeria monocytogenes, Mycobacterium bovis, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium paratuberculosis, Mycoplasma bovis, Mycoplasma mycoides, Mycoplasma agalactiae, Pasterella multocida, Pseudomonas aeruginosa, Salmonella Dublin, Shigella flexneri, Staphylococcus aureus, Yersinia enterocolitica, Yersinia pseudotuberculosis, а также геномной ДНК КРС, МРС, комаров родов Culex, Aedes, Anopheles.

При тестировании образцов ДНК/РНК вышеперечисленных микроорганизмов и ДНК КРС, МРС, комаров родов *Culex*, *Aedes, Anopheles* неспецифических реакций выявлено не было.

Повторяемость и воспроизводимость исследования

Условия повторяемости включали в себя тестирование в одной лаборатории, одним оператором, с использованием одного оборудования. Условия воспроизводимости — тестирование разными операторами, в разные дни, на различных приборах разных серий тест-системы. Результаты представлены в табл. 3.

Таблица 3

	Повтор	яемость	Воспроизводимость	
Тип образцов	Количество образцов	Совпадение результатов, %	Количество образцов	Совпадение результатов, %
Положительные	10	100	30	100
Отрицательные	10	100	30	100

ИНТЕРФЕРИРУЮЩИЕ ВЕЩЕСТВА И ОГРАНИЧЕНИЯ ПО ИСПОЛЬЗОВАНИЮ ПРОБ ИССЛЕДУЕМОГО МАТЕРИАЛА

В ходе анализа рисков были определены следующие особенности состава тест-системы и конфигурации анализа, которые позволяют исключить влияние потенциально интерферирующих веществ на результат анализа, полученный методом полимеразной цепной реакции:

- использование специфичных олигонуклеотидных праймеров и флуоресцентно-меченых олигонуклеотидных зондов, комплементарных участкам выявляемых кДНК-мишеней;
- использование экзогенного внутреннего контроля (ВКО-V),
 добавляемого в каждый исследуемый образец на этапе

экстракции РНК, результат амплификации которого учитывается при оценке валидности результатов анализа.

Критерием отсутствия влияния потенциально интерферирующих веществ является валидный результат ПЦР-исследования.

Ввиду указанных особенностей состава тест-системы и конфигурации анализа, изучение интерферирующих свойств отдельных компонентов биологического образца не требуется.

ФОРМЫ КОМПЛЕКТАЦИИ

Форма 1: «ПЦР-комплект» вариант FRT-50 F

Форма 1 предназначена для проведения реакции обратной транскрипции РНК и амплификации кДНК с гибридизационнофлуоресцентной детекцией в режиме «реального времени». Для проведения полного ПЦР-исследования необходимо использовать комплекты реагентов для экстракции РНК, рекомендованные Изготовителем.

Форма 1 рассчитана на проведение 55 реакций обратной транскрипции и амплификации, включая контроли.

COCTAB

«ПЦР-комплект» вариант FRT-50 F — комплект реагентов для обратной транскрипции РНК и амплификации кДНК Schmallenberg virus с гибридизационно-флуоресцентной детекцией в режиме «реального времени» — включает:

Реагент	Описание	Объем, мл	Количество
ОТ-ПЦР-смесь-1-FRT Schmallenberg virus	Прозрачная жидкость от бесцветного до светло-лилового цвета	0,6	1 пробирка
ПЦР-буфер-С	Прозрачная бесцветная жидкость	0,3	1 пробирка
Полимераза (TaqF)	Прозрачная бесцветная жидкость	0,03	1 пробирка
TM-Ревертаза (MMIv)	Прозрачная бесцветная жидкость	0,015	1 пробирка
RT-G-mix-2	Прозрачная бесцветная жидкость	0,015	1 пробирка
ПКО кДНК Schmallenberg virus / STI	Прозрачная бесцветная жидкость	0,2	1 пробирка
K-	Прозрачная бесцветная жидкость	0,2	1 пробирка
ОКО	Прозрачная бесцветная жидкость	1,2	1 пробирка
BKO-V	Прозрачная бесцветная жидкость	0,6	1 пробирка

Реагенты комплекта упакованы раздельно в соответствии с температурой хранения (см. раздел «Хранение»).

МЕРЫ ПРЕДОСТОРОЖНОСТИ

- Работа должна проводиться согласно правилам МСХиП РФ 27.01.1997 г. № 13-7-2/840 «Правила проведения работ в лабораториях, использующих диагностических полимеразной цепной реакции. Основные положения», утвержденным Департаментом ветеринарии, и методическим 1.3.2569-09 «Организация ΜУ указаниям работы лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности».
- Температура в помещении лаборатории от 20 до 28 °C, относительная влажность от 15 до 75%.
- Допускать к работе с тест-системой только персонал, обученный молекулярно-биологическим методам диагностики и правилам работы в лаборатории в установленном порядке.
- Лабораторный процесс должен быть однонаправленным. Анализ проводится в отдельных помещениях (зонах). Работу следует начинать в Зоне Экстракции, продолжать в Зоне

Амплификации и Детекции. Не возвращать образцы и реагенты в зону, в которой была проведена предыдущая стадия процесса. Все лабораторное оборудование, в том числе дозаторы, штативы, лабораторная посуда, а также все рабочие растворы должны быть строго стационарными. Запрещается переносить их из одного помещения в другое.

- Использовать и менять при каждой операции одноразовые наконечники для автоматических дозаторов с фильтром².
 Одноразовую пластиковую посуду (пробирки, наконечники) необходимо сбрасывать в специальный контейнер, содержащий дезинфицирующее средство, которое может быть использовано для обеззараживания отходов.
- Посуда (ступки и пестики) и металлические инструменты пинцеты), (скальпели, ножницы, использованные гомогенизации, выдерживаются В растворе (например, 0,2 % дезинфицирующего средства натриевой соли дихлоризоциануровой кислоты) в течение одного часа, моются водопроводной водой с поверхностноактивными моющими средствами и после отмывания деионизованной проточной И воде высушиваются В сухожаровом шкафу в течение 4 часов при температуре 180 °C.
- Поверхности столов, а также помещения, в которых проводится постановка ПЦР, до начала и после завершения работ необходимо подвергать ультрафиолетовому облучению в течение 30 мин.
- Тест-система предназначена для одноразового применения для проведения ПЦР-исследования указанного количества проб (см. раздел «Формы комплектации»).
- Тест-система готова к применению согласно данной инструкции. Применять тест-систему строго по назначению.
- Не использовать тест-систему, если нарушена внутренняя упаковка или внешний вид реагента не соответствует описанию.
- Не использовать тест-систему, если не соблюдались условия транспортирования и хранения согласно инструкции.
- Не использовать тест-систему по истечении срока годности.

² Для удаления жидкости с помощью вакуумного отсасывателя используются одноразовые наконечники без фильтра.

- Использовать одноразовые неопудренные перчатки, лабораторные халаты, защищать глаза во время работы с образцами и реагентами. Тщательно вымыть руки по окончании работы. Все операции проводятся только в перчатках для исключения контакта с организмом человека.
- Избегать вдыхания паров, контакта с кожей, глазами и слизистой оболочкой. Вредно при проглатывании. При контакте немедленно промыть пораженное место водой, при необходимости обратиться за медицинской помощью.

При соблюдении условий транспортировки, эксплуатации и хранения риски взрыва и возгорания отсутствуют.

Тест-систему хранить в местах, не доступных для детей.

СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

Неиспользованные реагенты, реагенты с истекшим сроком годности, использованные реагенты, упаковку³, биологический материал, а также материалы, инструменты и предметы, загрязненные биологическим материалом, следует удалять в соответствии с требованиями СанПиН 2.1.3684-21 «Санитарноэпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации И проведению (профилактических) санитарно-противоэпидемических мероприятий».

ВНИМАНИЕ! При удалении отходов после амплификации (пробирок, содержащих продукты ПЦР) недопустимо открывание пробирок и разбрызгивание содержимого, поскольку это может привести к контаминации продуктами ПЦР лабораторной зоны, оборудования и реагентов.

Форма 1: REF VET-62-FRT(RG,iQ)-K; REF V-3051-1 / VER 31.08.23 / стр. 7 из 29

³ Неиспользованные реагенты, реагенты с истекшим сроком годности, использованные реагенты, упаковка относятся к классу опасности медицинских отходов Г.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ И ОБОРУДОВАНИЕ Взятие исследуемого материала

- 1. Одноразовые полипропиленовые плотно закрывающиеся пробирки объемом от 1,5 до 5 мл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 2. Контейнер пластиковый для взятия, хранения и транспортировки биологических образцов объемом 50-60 мл, стерильный (например, ООО «Комбитек Пластик», Россия, или аналогичный).
- 3. Вакуумная система забора крови (например, Greiner Bio-One GmbH («Грейнер Био-Уан»), Австрия, или аналогичные).

Предварительная подготовка исследуемого материала

- 4. 0,9 % раствор натрия хлорида (стерильный физиологический раствор) или фосфатный буферный раствор (PBS) (натрия хлорид, 137 мМ; калия хлорид, 2,7 мМ; натрия монофосфат, 10 мМ; калия дифосфат, 2 мМ; рH=7,5±0,2).
- 5. Одноразовые полипропиленовые завинчивающиеся или плотно закрывающиеся пробирки объемом 1,5 мл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 6. Завинчивающиеся крышки к пробиркам (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 7. Одноразовые наконечники для дозаторов переменного объема с фильтром до 100, до 200 и до 1000 мкл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 8. Штативы для пробирок объемом 1,5 мл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 9. Отдельные для каждой пробы стерильные инструменты для гомогенизации (фарфоровая ступка с пестиком) или гомогенизатор для проведения пробоподготовки тканевого материала.
- 10.Микроцентрифуга для пробирок типа «Эппендорф» с максимальной скоростью центрифугирования не менее 12 тыс. g (например, MiniSpin, Eppendorf Manufacturing Corporation («Эппендорф Мануфэктуринг Корпорэйшн»), Германия, или аналогичная).
- 11. Автоматические дозаторы переменного объема (например, OOO «Биохит», Россия, или аналогичные).
- 12.Холодильник от 2 до 8 °C с морозильной камерой от минус 24 до минус 16 °C.

- 13. Отдельный халат, шапочка, обувь и одноразовые перчатки.
- 14.Одноразовые пластиковые контейнеры для сброса и инактивации материалов.

Экстракция РНК из исследуемых образцов

- 15. Комплекты реагентов для экстракции РНК «РИБО-преп», АмплиСенс® МАГНО-сорб-М.
- 16.Дополнительные материалы и оборудование для экстракции РНК – согласно инструкции к комплекту реагентов для экстракции РНК.

<u>При использовании автоматических станций для экстракции нуклеиновых кислот:</u>

- 17. Автоматическая станция для экстракции НК Auto-Pure 96 (Hangzhou Allsheng Instruments Co., Ltd. («Ханчжоу Аошенг Инструментс Ко., Лтд.»), Китай, и другие, рекомендованные Изготовителем).
- 18. Комплект реагентов для экстракции РНК АмплиСенс® МАГНОсорб-М.
- 19. Набор расходных материалов к используемой автоматической станции в соответствии с рекомендациями ее производителя.

Обратная транскрипция и амплификация с гибридизационно-флуоресцентной детекцией продуктов амплификации

- 20. Одноразовые полипропиленовые пробирки:
 - а) завинчивающиеся или плотно закрывающиеся пробирки объемом 1,5 мл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные) для приготовления реакционной смеси;
 - б) тонкостенные пробирки для ПЦР объемом 0,2 мл с выпуклой или плоской оптически прозрачной крышкой или пробирки объемом 0,2 мл в стрипах по 8 шт. с прозрачными крышками (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные) при использовании прибора планшетного типа;
 - в) тонкостенные пробирки для ПЦР объемом 0,2 мл с плоской крышкой (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные) при использовании прибора роторного типа.
- 21.Одноразовые наконечники для дозаторов переменного

- объема с фильтром до 100, до 200 мкл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 22. Штативы для пробирок объемом 0,2 мл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 23. Бокс абактериальной воздушной среды (ПЦР-бокс) (например, «БАВ-ПЦР-«Ламинар-С.», ЗАО «Ламинарные системы», Россия, или аналогичный).
- 24. Центрифуга-вортекс (например, SIA Biosan, Латвия, или аналогичный).
- 25. Автоматические дозаторы переменного объема (например, OOO «Биохит», Россия, или аналогичные).
- 26. Программируемый амплификатор с системой детекции флуоресцентного сигнала в режиме «реального времени», Rotor-Gene 3000/6000 (Corbett Research. (например, Австралия), Rotor-Gene Q (QIAGEN GmbH, («Киаген ГмбХ»), Германия), iCycler iQ/iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США), CFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»). США) или другие, рекомендованные Изготовителем).
- 27. Холодильник от 2 до 8 °C с морозильной камерой от минус 24 до минус 16 °C.
- 28.Отдельный халат, шапочка, обувь и одноразовые перчатки.
- 29. Емкость для сброса наконечников.

ПОРЯДОК ОТБОРА И ПОДГОТОВКИ ПРОБ

Материалом для исследования служат <u>клинический и</u> <u>патологический материал от крупного и мелкого рогатого скота, комары, мокрецы</u>.

От животных с клиническими признаками для исследования используют цельную кровь или плазму/сыворотку крови.

От павших животных, новорожденных животных с пороками развития и мертворожденных плодов исследуют <u>околоплодную жидкость</u>, <u>тканевой материал</u> (головной мозг, спинной мозг, плацента, пуповина).

ПЦР-ВНИМАНИЕ! Вид биологического материала ДЛЯ исследования определяет ветеринарный врач. При выборе материала биологического необходимо руководствоваться болезни исследования, знаниями патогенезе целью 0 действующими регламентирующими документами.

Взятие, транспортирование и хранение исследуемого материала

При взятии материала используют отдельные инструменты для каждого животного.

Взятие <u>крови</u> проводится в стерильные пробирки с 3 %-ным раствором ЭДТА из расчета 10:1 (или с цитратом натрия в стандартной концентрации). Закрытую пробирку с кровью несколько раз переворачивают.

Взятие крови для получения сыворотки проводится в стерильную пробирку без антикоагулянта.

<u>Тканевой (аутопсийный) материал</u> (фрагменты органов) помещают в стерильный пластиковый контейнер.

Околоплодную жидкость берут в объеме не менее 1 мл в стерильные пробирки.

Материал доставляют в лабораторию в течение суток, сохраняя при температуре от 2 до 8 °C.

Допускается хранение образцов цельной крови при температуре от 2 до 8 °C – не более 48 часов. Замораживание цельный крови не допускается.

Допускается хранение остальных видов материала:

- при температуре от 2 до 8 °C не более 3 суток;
- при температуре от минус 24 до минус 16 °C в течение 1 месяца,
- при температуре не выше минус 68 °C длительно.

Допускается однократное замораживание-оттаивание материала.

Подготовка исследуемого материала к экстракции РНК

Образцы <u>цельной крови</u>, <u>околоплодной жидкости</u> не требуют предварительной подготовки.

Образцы плазмы/сыворотки, тканевой материал, комары/мокрецы требуют предварительной подготовки.

Для получения <u>плазмы</u> пробирку с цельной кровью центрифугируют в течение 10 мин при 1000 g (если кровь стояла при температуре от 2 до 8 °C более 1 ч после ее забора, то пробирку следует аккуратно несколько раз перевернуть для равномерного перемешивания крови). Переносят плазму в количестве не менее 1 мл отдельными наконечниками с фильтром в стерильные пробирки объемом 1,5 мл.

Для получения сыворотки пробирки с кровью отстаивают при комнатной температуре в течение 30 мин до полного

образования сгустка. Затем центрифугируют при 800-1600 g в течение 10 мин при комнатной температуре. Переносят сыворотку в количестве не менее 1 мл отдельными наконечниками с фильтром в стерильные пробирки объемом 1,5 мл.

Тканевой материал объемом 0,2-0,3 см³ (200-300 мкл) гомогенизируют с использованием стерильных фарфоровых ступок и пестиков или автоматического гомогенизатора, затем готовят ~10 % (v/v) суспензию на стерильном физиологическом растворе. Суспензию отстаивают при комнатной температуре в течение 2-3 мин. Экстракцию РНК проводят из верхней фазы суспензии. Допускается хранение гомогенатов тканей при температуре от минус 24 до минус 16 °C в течение 1 месяца.

гомогенизируют комаров Мокрецов И В стерильном физиологическом растворе или фосфатном буфере из расчета 1 особь – 30 мкл раствора с использованием стерильных СТУПОК пестиков фарфоровых И ИЛИ автоматического Предварительно из насекомых формируют гомогенизатора. пулы (не более 50 особей). При наличии автоматического гомогенизатора TissueLyser LT применяют следующие параметры для гомогенизации: диаметр шариков – 5 мм; частота − 50 Гц/с; время гомогенизации – 5 мин; объем буфера – 700 мкл особей), 1000-1500 мкл (пул из 50 особей). (пул из 25 центрифугируют Полученные суспензии при 10 тыс. а (12 тыс. об/мин на центрифуге MiniSpin, Eppendorf Manufacturing («Эппендорф Мануфэктуринг Корпорэйшн»), Corporation Германия) в течение 1 мин.

ПРОВЕДЕНИЕ ПЦР-ИССЛЕДОВАНИЯ

ПЦР-исследование состоит из следующих этапов:

- экстракция РНК из исследуемых образцов,
- обратная транскрипция РНК и амплификация кДНК (ОТ-ПЦР)
 с гибридизационно-флуоресцентной детекцией в режиме «реального времени»,
- анализ и интерпретация результатов.

Экстракция РНК из исследуемого материала

Для экстракции РНК используются комплекты реагентов «РИБО-преп», АмплиСенс® МАГНО-сорб-М.

Порядок работы с комплектами реагентов смотрите в инструкции к соответствующему комплекту для экстракции.

Экстракцию РНК из каждого исследуемого образца необходимо проводить в присутствии внутреннего контрольного образца — **BKO-V**.

Реакцию ОТ-ПЦР следует проводить сразу после получения РНК-пробы.

Очищенная РНК может храниться:

- при температуре от 2 до 8 °C − до 4 ч;
- при температуре от минус 24 до минус 16 °C в течение 1 месяца;
- при температуре не выше минус 68 °C в течение года.

Объемы реагентов и образцов при экстракции с помощью комплекта реагентов «РИБО-преп»:

Объем ВКО – 10 мкл в каждую пробирку.

Объем исследуемого образца:

- 50 мкл образца и 50 мкл ОКО при исследовании образцов цельной крови или околоплодной жидкости,
- 100 мкл при исследовании других видов материала.

В пробирку отрицательного контроля экстракции (ОК) внести **100 мкл ОКО**.

Объем элюции – 50 мкл.

Объемы реагентов и образцов при экстракции с помощью комплекта реагентов АмплиСенс® МАГНО-сорб-М с использованием магнитных штативов вручную:

Объем ВКО – 10 мкл в каждую пробирку.

Объем исследуемого образца – 200 мкл.

В пробирку отрицательного контроля экстракции (ОК) внести **200 мкл ОКО**.

Объем элюции – **100 мкл**.

Объемы реагентов и образцов при экстракции с помощью комплекта реагентов АмплиСенс® МАГНО-сорб-М с использованием автоматических станций для экстракции нуклеиновых кислот:

Экстракция нуклеиновых кислот проводится с помощью автоматической станции Auto-Pure 96 (Hangzhou Allsheng Instruments Co., Ltd., Китай) в соответствии с инструкцией по ее эксплуатации и с использованием соответствующего протокола экстракции.

Объем ВКО – 10 мкл в каждую пробирку.

Объем исследуемого образца – 200 мкл.

В пробирку отрицательного контроля экстракции (ОК) внести **200 мкл ОКО**.

Объем элюции – **100 мкл**.

Обратная транскрипция, амплификация и детекция продуктов амплификации

А. Подготовка проб для проведения ОТ-ПЦР

ВНИМАНИЕ! При работе с РНК необходимо использовать только одноразовые стерильные пластиковые расходные материалы, имеющие специальную маркировку RNase-free, DNase-free.

Выбор пробирок для проведения ОТ-ПЦР зависит от используемого амплификатора с системой детекции в режиме «реального времени».

Для внесения в пробирки реагентов, проб РНК и контрольных образцов используются одноразовые наконечники с фильтрами.

Общий объем реакции – 25 мкл, объем РНК-пробы – 10 мкл. Разморозить пробирку с ОТ-ПЦР-смесью-1-FRT Schmallenberg virus, перемешать на вортексе и сбросить капли с помощью кратковременного центрифугирования.

Для проведения N реакций смешать в отдельной пробирке OT-ПЦР-смесь-1-FRT Schmallenberg virus, ПЦР-буфер-С, полимеразу (ТаqF), ТМ-Ревертазу (ММІV) и RT-G-mix-2 из расчета на каждую реакцию:

- 10 мкл ОТ-ПЦР-смеси-1-FRT Schmallenberg virus;
- 5 мкл ПЦР-буфера-С;
- 0,5 мкл полимеразы (TaqF);
- 0,25 мкл ТМ-Ревертазы (MMIv);
- 0,25 мкл RT-G-mix-2.

Перемешать **смесь** на вортексе, осадить кратковременным центрифугированием и внести по **15 мкл** в пробирки для ОТ-ПЦР.

Используя наконечник с фильтром, в подготовленные пробирки добавить по **10 мкл проб РНК,** полученных в результате экстракции из исследуемых образцов.

Поставить контрольные реакции:

- а) **отрицательный контроль ОТ-ПЦР (К–)** в пробирку с реакционной смесью внести **10 мкл К–**.
- б) положительный контроль ОТ-ПЦР (К+) в пробирку с реакционной смесью внести 10 мкл ПКО кДНК Schmallenberg virus / STI.
- в) **отрицательный контроль экстракции (ОК)** в пробирку с реакционной смесью внести **10 мкл** пробы, экстрагированной из ОКО.

Б. Проведение ОТ-ПЦР с детекцией в режиме «реального времени»

Порядок работы с помощью приборов Rotor-Gene 3000/6000 (Corbett Research, Австралия) и Rotor-Gene Q (QIAGEN GmbH («Киаген ГмбХ»), Германия) смотрите в Приложении 1.

Порядок работы с помощью приборов iCycler iQ и iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США) смотрите в Приложении 2.

Порядок работы с помощью прибора CFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США) смотрите в Приложении 3.

Интерпретация результатов

ВНИМАНИЕ! Результат ПЦР-исследования не является диагнозом. Оценка результатов исследования проводится ветеринарным врачом в соответствии с целью исследования и действующими регламентирующими документами.

Анализируют кривые накопления флуоресцентного сигнала, свидетельствующего о накоплении продукта амплификации, по двум каналам:

Таблица 4

Канал для флуорофора	FAM	JOE
Продукт амплификации	кДНК ВКО-V	кДНК Schmallenberg virus

Результаты интерпретируют на основании наличия (или отсутствия) пересечения кривой флуоресценции S-образной (сигмообразной) формы с установленной на соответствующем уровне пороговой линией, что определяет наличие (или отсутствие) для данной пробы РНК значения порогового цикла (Ct).

Результаты для контролей этапов экстракции и ОТ-ПЦР должны соответствовать критериям, указанным в табл. 5.

Таблица 5

Результаты для контролей различных этапов ПЦРисследования

Контроль Контролируемый этап		Значение порогового цикла (<i>Ct</i>) по каналу для флуорофора		
•	ПЦР-исследования	FAM	JOE	
ОК	Экстракция РНК	≤ 30	отсутствует	
К–	ОТ-ПЦР	отсутствует	отсутствует	
K+	ОТ-ПЦР	≤ 30	≤ 30	

При наличии отклонений результатов для контролей от указанных выше интерпретация ряда исследуемых образцов невозможна (см. «Возможные ошибки).

Принцип интерпретации результатов следующий:

Таблица 6

Интерпретация результатов анализа исследуемых образцов

Значение порогового флуо	Результат	
FAM	FAM JOE	
≤ 33	отсутствует	PHK Schmallenberg virus HE обнаружена
определено или отсутствует	≤ 37	PHK Schmallenberg virus обнаружена
отсутствует или > 33	отсутствует или > 37	Невалидный*
≤ 33	> 37	Сомнительный**

^{*} В случае получения **невалидного результата** необходимо провести повторное ПЦР-исследование соответствующего исследуемого образца, начиная с этапа экстракции РНК.

Возможные ошибки:

1. Для положительного контроля ОТ-ПЦР (К+) значение порогового цикла (*Ct*) по каналу для флуорофора ЈОЕ отсутствует или превышает значение, указанное в таблице 5. Невозможна интерпретация результатов для образцов, в которых не обнаружена РНК анализируемого

^{**} В случае получения **сомнительного результата** необходимо провести повторное ПЦР-исследование соответствующего исследуемого образца, начиная с этапа экстракции. В случае повторения аналогичного результата считать, что в образце обнаружена РНК Schmallenberg virus.

- микроорганизма. Необходимо повторить амплификацию таких образцов.
- 2. Для отрицательного контроля экстракции (ОК) по каналу для флуорофора ЈОЕ и/или для отрицательного контроля ОТ-ПЦР (К-) по каналам для флуорофоров FAM, JOE определено значение порогового цикла (Ct). Вероятна контаминация лаборатории продуктами амплификации или кросс-контаминация от пробы пробе реагентов К образцов ПЦРисследуемых каком-либо этапе на исследования. Невозможна интерпретация результатов для образцов, в которых обнаружена РНК анализируемого Необходимо предпринять микроорганизма. меры выявлению и ликвидации источника контаминации и повторить ПЦР-исследование таких образцов, начиная этапа экстракции.

СРОК ГОДНОСТИ. УСЛОВИЯ ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

Срок годности. 15 мес. Тест-система с истекшим сроком годности применению не подлежит. Срок годности вскрытых реагентов соответствует сроку годности, указанному на этикетках для невскрытых реагентов.

Транспортирование. Тест-систему транспортировать при температуре от 2 до 8 °C не более 5 сут в термоконтейнерах, содержащих хладоэлементы, всеми видами крытых транспортных средств.

Хранение.

<u>Форма 1.</u> «ПЦР-комплект» вариант FRT-50 F состоит из двух частей, хранящихся при разных температурах:

- часть 1 (ПКО кДНК Schmallenberg virus / STI, К-, ОКО, ВКО-V)
 хранить в холодильной камере при температуре от 2 до 8 °C;
- часть 2 (ОТ-ПЦР-смесь-1-FRT Schmallenberg virus, ПЦР-буфер-С, полимераза (ТаqF), ТМ-Ревертаза (ММІv), RT-G-mix-2) хранить в морозильной камере при температуре от минус 24 до минус 16 °C. ОТ-ПЦР-смесь-1-FRT Schmallenberg virus хранить в защищенном от света месте.

Температура хранения вскрытых реагентов соответствует температуре хранения, указанной на этикетках для невскрытых реагентов.

Холодильные и морозильные камеры должны обеспечивать регламентированный температурный режим.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие основных параметров и характеристик тест-системы требованиям, указанным в технической и эксплуатационной документации, в течение указанного срока годности при соблюдении всех условий транспортирования, хранения и применения.

Рекламации на качество тест-системы «SBV» направлять по адресу 111123, г. Москва, ул. Новогиреевская, дом 3A, e-mail: obtk@pcr.ru. Отзывы и предложения о продукции АмплиСенс® вы можете оставить, заполнив анкету потребителя на сайте: www.amplisens.ru.

ПРИЛОЖЕНИЕ 1

ОБРАТНАЯ ТРАНСКРИПЦИЯ И АМПЛИФИКАЦИЯ С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ», АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРОВ Rotor-Gene 3000/6000 (Corbett Research, Австралия) и Rotor-Gene Q (QIAGEN GmbH («Киаген ГмбХ»), Германия)

ВНИМАНИЕ! Программирование амплификатора Rotor-Gene 6000/Rotor-Gene Q и анализ результатов, полученных в программном обеспечении амплификатора Rotor-Gene 6000/Rotor-Gene Q, могут быть выполнены автоматически, с помощью Программного обеспечения FRT Manager («ИнтерЛабСервис», Россия).

Для работы с прибором Rotor-Gene 3000 следует использовать программу Rotor-Gene версии 6, с приборами Rotor-Gene 6000 и Rotor-Gene Q – программу Rotor-Gene 6000 версии 1.7 (build 67) или выше.

Далее по тексту термины, соответствующие разным версиям приборов и программного обеспечения, указаны в следующем порядке: для прибора Rotor-Gene 3000 / для англоязычной версии программы Rotor-Gene 6000/Q / для русскоязычной версии программы Rotor-Gene 6000/Q.

А. Проведение ОТ-ПЦР и детекции флуоресцентного сигнала

Включить прибор, запустить программу Rotor-Gene.

Поместить подготовленные для проведения ОТ-ПЦР пробирки в ротор амплификатора, начиная с ячейки номер 1 (ячейки ротора пронумерованы, эти номера используются в дальнейшем для программирования положения проб в амплификаторе), установить ротор в прибор, закрыть крышку. Запрограммировать прибор.

ВНИМАНИЕ! Лунка 1 обязательно должна быть заполнена какой-либо исследуемой пробиркой (не пустой).

- Нажать кнопку **New/Hoвый** в основном меню программы. Для создания шаблона в открывшемся окне **New Run/Hoвый тест** следует выбрать вкладку **Advanced/Детальный мастер.**
- Во вкладке выбрать шаблон запуска эксперимента

- **TwoStep/Hidrolysis Probes/Двухшаговый цикл**. Нажать кнопку **New/Hoвый**.
- Выбрать тип ротора. Поставить отметку в окошке рядом с надписью No Domed 0.2 ml Tubes/Locking ring attached/Кольцо закреплено.
- Нажать кнопку Next/Далее.
- Выбрать объем реакционной смеси: Reaction volume/Объем реакции 25 мкл. Для прибора Rotor-Gene 6000 должно быть отмечено окошко 15 µl oil layer volume/ 15 µL объем масла/воска.
- Нажать кнопку **Next/Далее**.
- В верхней части окна нажать кнопку Edit profile/Редактор профиля.
- Задать следующие параметры эксперимента:

Таблица 7

Программа амплификации SBV

Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
Hold 1/ Удерж. темп-ры 1	50	30 мин	ı	1
Hold 2/ Удерж. темп-ры 2	95	15 мин	ı	1
Cycling 1/	95	10 c	ı	
Cycling 1/ Циклирование 1	60	20 c	ı	5
циклирование т	72	10 c	ı	
	95	10 c	-	
Cycling 2/ Циклирование 2	55	20 c	FAM/Green, JOE/Yellow	40
	72	10 c	_	

- Нажать дважды кнопку *ОК/Да*.
- Calibrate/Gain нижней части окна нажать кнопку Optimisation/Опт.уровня сигн. В открывшемся окне нажать кнопку Calibrate Acquiring/Optimise Acquiring/Опт. Детекмых, выбрать функцию: Perform Calibration Before 1st **Optimisation** Acquisition/Perform **Before** 1st Acquisition/Выполнить оптимизацию при 1-м **детекции**. Для обоих каналов установить параметры **Min** Reading/Миним. Сигнал — 5 Fl и Max Reading/Максим. *Сигнал* – 10 Fl. Окно закрыть, нажав кнопку *Close/Закрыть*.
- Нажать кнопку Next/Далее, запустить амплификацию кнопкой Start run/Cmapm.

 Дать название эксперимента и сохранить его на диске (в этом файле будут автоматически сохранены результаты данного эксперимента).

В процессе работы амплификатора или по окончании его работы необходимо запрограммировать положение пробирок в роторе. Для этого надо использовать кнопку *Edit samples/Правка образцов* (в нижней правой части основного окна). Все исследуемые образцы и контроли обозначить как *Unknown/Образец*.

Б.Анализ результатов

Анализ полученных результатов проводят вручную, с помощью программного обеспечения прибора, используемого для проведения ОТ-ПЦР с детекцией в режиме «реального времени», или в автоматическом режиме, с использованием ПО FRT Manager.

Анализ результатов по каналу FAM/Green:

- Нажать в меню кнопку *Analysis/Анализ*, выбрать режим анализа *Quantitation/Количественный*, нажать кнопку *Cycling A. FAM/Cycling A. Green*, *Show/Показать*.
- Отменить автоматический выбор *Threshold/Порог*.
- В меню основного окна Quantitation analysis/Количественный анализ должна быть активирована кнопка Dynamic tube/Динамич.фон и Slope Correct/Коррек. уклона.
- Выбрать линейную шкалу графического изображения результатов, нажав кнопку Linear scale/Линейная шкала, в нижней части окна справа (если эта шкала активна по умолчанию, вместо кнопки Linear scale/Линейная шкала видна кнопка Log scale/Лог.шкала).
- В меню основного окна More settings/Outlier Removal/Устранение выбросов установить значение NTC threshold/Порог Фона – ПФ (NTC) – 10%.
- В меню *CT Calculation/Вычисление CT* (в правой части окна) выставить *Threshold/Порог* = **0.05**.
- В таблице результатов (окно **Quant. Results/Количественные Результаты**) появятся значения **Ct**.

Анализ результатов по каналу JOE/Yellow провести аналогично анализу результатов по каналу FAM/Green в соответствии с настройками, указанными в таблице ниже.

Таблица 8

Канал	Threshold/ Nopor	Dynamic tube/ Динамич.фон	Slope Correct/ Коррект. уклона	More Settings/ Outlier Removal/ Устранение выбросов
FAM/Green	0,05	включена	включена	10%
JOE/Yellow	0,1	включена	включена	10%

ПРИЛОЖЕНИЕ 2

ОБРАТНАЯ ТРАНСКРИПЦИЯ И АМПЛИФИКАЦИЯ С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ», АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРОВ iCycler iQ и iCycler iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США)

А.Проведение ОТ-ПЦР и детекции флуоресцентного сигнала Включить прибор и блок питания оптической части прибора. Проводить измерения не менее чем через 30 мин после включения оптической части прибора.

Открыть программу iCycler.

Задать схему планшета – расположение пробирок в модуле и измерение флуоресцентного сигнала:

- Для прибора iCycler iQ5 в окне Selected Plate Setup модуля Workshop нажать кнопку Create New или Edit. Редактировать схему планшета в режиме Whole Plate loading. В опции Select and load Fluorophores задать измерение флуоресцентного сигнала во всех пробирках по каналам FAM и JOE. Задать объем реакции (Sample Volume) 25 мкл, тип крышек (Seal Type): Domed Cap, тип пробирок (Vessel Type): Tubes. Сохранить заданную схему планшета, нажав кнопку Save&Exit Plate Editing.
- Для прибора iCycler iQ в окне Edit Plate Setup модуля Workshop в опции Samples: Whole Plate Loading задать схему расположения образцов в реакционном модуле и указать имя каждой пробы в окне Sample Identifier. В опции Select and load Fluorophores задать измерение флуоресцентного сигнала во всех пробирках по каналам FAM и JOE. Сохранить схему планшета, задав имя файла в окне Plate Setup Filename (с расширением «.pts») и нажав кнопку Save this plate setup (в верхней части экрана). Назначить использование данной схемы планшета, нажав кнопку Run with selected protocol.

Задать программу амплификации:

Программа амплификации SBV

			-	
Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
1	50	30 мин	_	1
2	95	15 мин	_	1
	95	10 c	_	
3	60	25 c	_	5
	72	25 c	_	
	95	10 c	_	
4	55	25 c	FAM, JOE	40
	72	25 c	_	

- Для прибора iCycler iQ5 в окне Selected Protocol модуля Workshop нажать кнопку Create New или Edit. Задать параметры амплификации и сохранить протокол, нажав кнопку Save&Exit Protocol Editing. При последующих постановках можно выбрать файл с этой программой в блоке Protocol (по умолчанию файлы протоколов сохраняются в папке Users).
- Для прибора iCycler iQ выбрать опцию Edit Protocol модуля Workshop. Задать параметры амплификации (количество циклов, время и температуру циклирования), а в окне справа указать шаг считывания флуоресцентного сигнала: Cycle 3 Step 2. Сохранить протокол, задав имя файла в окне Protocol Filename (SBV.tmo) и нажав кнопку Save this protocol (в верхней части экрана). При последующих постановках можно выбрать файл с этой программой в закладке View Protocol в модуле Library. Выбрав или отредактировав нужную программу, назначить ее использование, нажав кнопку Run with selected plate setup.

Поместить предварительно подготовленные для проведения ОТ-ПЦР пробирки в модуль в соответствии с заданной схемой. Запустить выполнение выбранной программы **SBV** с заданной схемой планшета.

Для прибора iCycler iQ5 перед запуском выполнения программы следует проверить правильность выбранного протокола (Selected Protocol) и схемы планшета (Selected Plate Setup). Для запуска нажать кнопку Run. Выбрать для измерения факторов лунок вариант Collect Well Factors from Experimental Plate. Нажать кнопку Begin Run, дать название эксперимента (в этом файле будут автоматически сохранены результаты данного эксперимента) и нажать OK.

Для прибора iCycler iQ перед запуском выполнения программы в окне *Run Prep* следует проверить правильность выбранного имени протокола и схемы планшета. Выбрать для измерения факторов лунок вариант *Experimental Plate* в меню *Select well factor source*. Задать объем реакционной смеси в окне *Sample Volume* – 25 мкл. Для запуска нажать кнопку *Begin Run*, дать название эксперимента (в этом файле будут автоматически сохранены результаты данного эксперимента) и нажать *OK*.

После окончания программы приступить к анализу результатов.

Б. Анализ результатов

- Запустить программу и открыть файл с результатами эксперимента. Для этого:
- Для прибора iCycler iQ5 выбрать нужный файл с данными анализа в окне Data File модуля Workshop и нажать кнопку Analyze.
- Для прибора iCycler iQ в модуле *Library* активировать окно *View Post-Run Data*. В окне *Data Files* выбрать нужный файл с данными анализа и нажать кнопку *Analyze Data*.
- Провести анализ результатов по каналам FAM и JOE для каждого канала по отдельности, активируя кнопку с названием соответствующего флуорофора.
- В режиме анализа данных PCR Base Line Subtracted Curve Fit (выбирается по умолчанию) поочередно для каждого канала установить пороговую линию, двигая ее курсором при уровне 5-10 % нажатой мыши, на левой кнопке максимального значения флуоресцентного сигнала образца К+. При этом пороговая линия должна пересекать только S-образные кривые накопления сигнала положительных образцов характерного контролей И на участке экспоненциального подъема флуоресценции, переходящего в линейный подъем и не пересекать базовую линию.

Примечание – Чтобы выделить график образца «К+» (или другого желаемого образца) установить курсор в схеме планшета, либо в таблице результатов.

- Вывести на экран таблицу результатов со значениями *Ct,* нажав кнопку *PCR Quant* (iCycler iQ) или кнопку *Results* (iCycler iQ5).

ПРИЛОЖЕНИЕ 3

ОБРАТНАЯ ТРАНСКРИПЦИЯ И АМПЛИФИКАЦИЯ С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ», АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРА CFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториз, Инк.»), США)

А. Проведение ОТ-ПЦР и детекции флуоресцентного сигнала

- Включить прибор и запустить программу Bio-Rad CFX Manager.
- В стартовом окне Startup Wizard необходимо выбрать позицию Create a new Run/Experiment (или в меню File выбрать New и далее Run.../Experiment...). Нажать ОК.
- В окне *Run Setup* выбрать вкладку *Protocol* и нажать кнопку *Create new...*. В появившемся окне *Protocol Editor New* задать параметры амплификации. Задать объем реакционной смеси *Sample Volume* 25 мкл.

Таблица 10

Программа амплификации SBV

Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
1	50	30 мин	_	1
1	95	15 мин	_	1
	95	10 c	_	
2	60	25 c	_	5
	72	25 c	_	
	95	10 c		
3	55	25 c	FAM, HEX	40
	72	25 c	_	

ВНИМАНИЕ! Для каждого шага этапов циклирования, нажав на кнопку *Step Options*, задать скорость нагревания/охлаждения *Ramp Rate* 2,5 °C/sec (см. рис. ниже). Нажать *OK*.

	1	50,0 C for 30:00
	2	95,0 C for 15:00
\rightarrow	3	95,0 C for 0:10
		Slow Ramp Rate to 2,5 C per second
	4	60,0 C for 0:25
		Slow Ramp Rate to 2,5 C per second
	5	72,0 C for 0:25
		Slow Ramp Rate to 2,5 C per second
	6	GOTO 3 , 4 more times
\rightarrow	7	95,0 C for 0:10
		Slow Ramp Rate to 2,5 C per second
	8	55,0 C for 0:25
		+ Plate Read
		Slow Ramp Rate to 2,5 C per second
	9	72,0 C for 0:25
		Slow Ramp Rate to 2,5 C per second
	10	GOTO 7, 39 more times

- Сохранить протокол: выбрать File и далее Save As в окне Protocol Editor New, ввести имя файла, нажать Сохранить.
- Задать схему планшета. Во вкладке *Plate* нажать кнопку Create new.... В появившемся окне Plate Editor - New задать расположение пробирок в модуле. Нажав кнопку **Select** Fluorophores, выбрать галочками В колонке Selected флуорофоры: **FAM**, **HEX** и нажать *OK*. В меню *Sample type* выбрать *Unknown* для всех образцов. Затем галочками в колонке *Load* (в правой части окна) измерение образцов флуоресцентного сигнала ДЛЯ всех необходимым каналам. В окне **Sample name** задать название образцов, при этом параметр *Load* должен быть отмечен галочкой.
- Сохранить схему планшета: выбрать File и далее Save As в окне Plate Editor New, ввести имя файла, нажать Сохранить.
- Выбрать вкладку Start Run. Открыть крышку прибора, нажав кнопку Open Lid. Поместить реакционные пробирки в ячейки амплификатора в соответствии с предварительно запрограммированной схемой планшета. Закрыть крышку прибора, нажав кнопку Close Lid.

ВНИМАНИЕ! Следите за тем, чтобы на стенках пробирок не оставалось капель, так как падение капли в процессе амплификации может привести к сбою сигнала и усложнить анализ результатов. Не переворачивайте пробирки (стрипы) при установке в прибор.

Запустить выполнение выбранной программы с заданной схемой планшета, нажав на кнопку Start Run, выбрать директорию для сохранения файла постановки, ввести имя файла, нажать Сохранить.

Б. Анализ результатов

- Запустить программу, открыть сохраненный файл с данными анализа. Для этого выбрать в меню *File*, затем *Open* и *Data file* и выбрать необходимый файл.
- В окне **Data Analysis** во вкладке **Quantification** представлены кривые флуоресценции, расположение пробирок в планшете и таблица со значениями пороговых циклов.
- Для каждого канала проверить правильность

автоматического выбора пороговой линии. Пороговая линия пересекать (Threshold) должна только S-образные (сигмообразные) кривые накопления сигнала положительных образцов контролей И на участке характерного экспоненциального подъема флуоресценции, переходящего в линейный подъем, и не пересекать базовую линию. В случае если это не так, необходимо установить пороговую линию вручную на уровне 5-10 % от максимального уровня флуоресценции, полученного для образца К+ в последнем цикле амплификации, при том, что график флуоресценции К+ характерное экспоненциальное нарастание показывает флуоресцентного сигнала.

Примечание – Чтобы выделить график образца «К+» (или другого желаемого образца), установить курсор в схеме планшета либо в таблице результатов.

СИМВОЛЫ, ИСПОЛЬЗУЕМЫЕ В ПЕЧАТНОЙ ПРОДУКЦИИ

Номер по каталогу

Осторожно!

Код партии

Содержимого достаточно для проведения n тестов

Дата изменения

Использовать до

Дата изготовления

Предел температуры

Изготовитель

Не допускать воздействия солнечного света

Знак обращения на рынке РФ