«УТВЕРЖДАЮ»

Директор Федерального бюджетного учреждения науки «Центральный научно-исследовательский институт Федеральной службы эпидемиологии» сфере защиты ПО надзору В потребителей и благодолучия человека

____В.Г. Акимкин

« 05 » jenaops

2023 г.

инструкция

по применению тест-системы «ВИК» для диагностики иммунодефицита кошек методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией в режиме «реального времени»

НАЗНАЧЕНИЕ

Тест-система «ВИК» предназначена ДЛЯ выявления ДНК иммунодефицита провирусной вируса кошек (*Feline Immunodeficiency Virus*) биологическом В материале животных методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией режиме «реального времени».

ПРИНЦИП МЕТОДА

выявления ДНК вируса иммунодефицита образцов экстракции ДНК из исследуемого основан экзогенного материала совместно С ДНК внутреннего контрольного образца (ВКО-V), амплификации полученной ДНК с гибридизационно-флуоресцентной детекцией продуктов амплификации в режиме «реального времени». ВКО позволяет контролировать все этапы ПЦР-исследования для каждого образца и оценивать влияние ингибиторов на результаты ПЦРисследования.

С полученными на этапе экстракции пробами ДНК проводится амплификация участков ДНК при помощи

специфичных к этим участкам праймеров и фермента Таq-полимеразы.

В составе реакционной смеси присутствуют флуоресцентномеченые олигонуклеотиды, которые гибридизуются с комплементарным участком амплифицируемой ДНК -мишени, в результате чего происходит нарастание интенсивности флуоресценции. Результаты амплификации регистрируются по следующим каналам флуоресцентной детекции (см. табл. 1):

Таблица 1

Канал для флуорофора	FAM	JOE
ДНК-мишень	ДНК ВКО-V	провирусная ДНК вируса иммунодефицита кошек

Тест-система содержит систему защиты от контаминации ампликонами за счет применения фермента урацил-ДНК-гликозилазы (УДГ) и дезоксиуридинтрифосфата.

АНАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Для данной тест-системы применимы следующие характеристики:

Аналитическая чувствительность (предел обнаружения, limit of detection, LOD)

Предел обнаружения был определен при использовании комплектов для экстракции ДНК «РИБО-преп» и АмплиСенс® МАГНО-сорб-М.

Таблица 2

Вид исследуемого материала	Предел обнаружения, ГЭ/мл¹
Цельная кровь	1x10 ³

Данный предел обнаружения достигается при соблюдении правил, указанных в разделе «Порядок отбора и подготовки проб».

Аналитическая специфичность

Аналитическая специфичность тест-системы доказана при исследовании ДНК/РНК следующих микроорганизмов: Feline Feline Calicivirus, Feline Coronavirus, Felid Herpes virus. Immunodeficiency virus, Feline Feline Leukemia virus. Panleukopenia virus, а также геномной ДНК кошки.

¹ Количество геномных эквивалентов микроорганизма (ГЭ) в 1 мл биологического материала.

При тестировании образцов ДНК/РНК вышеперечисленных микроорганизмов и ДНК кошки неспецифических реакций выявлено не было.

Повторяемость и воспроизводимость исследования

Условия повторяемости включали в себя тестирование в одной лаборатории, одним оператором, с использованием одного оборудования. Условия воспроизводимости — тестирование разными операторами, в разные дни, на различных приборах разных серий тест-системы. Результаты представлены в табл. 3.

Таблица 3

	Повтор	яемость	Воспроизводимость		
Тип образцов	Количество образцов	Совпадение результатов, %	Количество образцов	Совпадение результатов, %	
Положительные	10	100	30	100	
Отрицательные	10	100	30	100	

ИНТЕРФЕРИРУЮЩИЕ ВЕЩЕСТВА И ОГРАНИЧЕНИЯ ПО ИСПОЛЬЗОВАНИЮ ПРОБ ИССЛЕДУЕМОГО МАТЕРИАЛА

В ходе анализа рисков были определены следующие особенности состава тест-системы и конфигурации анализа, которые позволяют исключить влияние потенциально интерферирующих веществ на результат анализа, полученный методом полимеразной цепной реакции:

- использование специфичных олигонуклеотидных праймеров и флуоресцентно-меченых олигонуклеотидных зондов, комплементарных участкам выявляемых ДНК-мишеней;
- использование экзогенного внутреннего контроля (ВКО-V), добавляемого в каждый исследуемый образец на этапе экстракции ДНК, результат амплификации которого учитывается при оценке валидности результатов анализа.

Критерием отсутствия влияния потенциально интерферирующих веществ является валидный результат ПЦР-исследования.

Ввиду указанных особенностей состава тест-системы и конфигурации анализа, изучение интерферирующих свойств отдельных компонентов биологического образца не требуется.

ФОРМЫ КОМПЛЕКТАЦИИ

Форма 1: «ПЦР-комплект» вариант FRT-50 F

Форма 1 предназначена для проведения реакции амплификации провирусной ДНК вируса иммунодефицита кошек с гибридизационно-флуоресцентной детекцией в режиме «реального времени». Для проведения полного ПЦР-исследования необходимо использовать комплекты реагентов для экстракции ДНК, рекомендованные Изготовителем.

Форма 1 рассчитана на проведение 55 реакций амплификации, включая контроли.

COCTAB

«ПЦР-комплект» вариант FRT-50 F — комплект реагентов для амплификации участка провирусной ДНК вируса иммунодефицита кошек с гибридизационно-флуоресцентной детекцией в режиме «реального времени» — включает:

Реагент	Описание	Объем, мл	Количество	
	Прозрачная жидкость от			
ПЦР-смесь-1-FRT ВИК	бесцветного до светло-	0,3	2 пробирки	
	лилового цвета			
ПЦР-буфер-С	Прозрачная бесцветная	0,42	1 пробирка	
пці -буфер-С	жидкость	0,42	т пробирка	
TagF-UDG	Прозрачная бесцветная	0,03	1 пробирка	
radr-ubG	жидкость	0,03	ТПроойрка	
ПКО ДНК <i>FIV</i> /BK	Прозрачная бесцветная	0,1	1 пробирка	
TIKO ATIK T TVIBIC	жидкость	0,1	Проопрка	
K-	Прозрачная бесцветная	0,2	1 пробирка	
IX—	жидкость	0,2	т проопрка	
ОКО	Прозрачная бесцветная	1,2	1 пробирка	
OKO	жидкость	1,2	т проопрка	
BKO-V	Прозрачная бесцветная	0,6	1 пробирка	
	жидкость	0,0	т прооирка	

Реагенты комплекта упакованы раздельно в соответствии с температурой хранения (см. раздел «Хранение»).

МЕРЫ ПРЕДОСТОРОЖНОСТИ

Работа должна проводиться согласно правилам МСХиП РФ 27.01.1997 г. № 13-7-2/840 «Правила проведения работ в диагностических лабораториях, использующих метод полимеразной цепной реакции. Основные положения», утвержденным Департаментом ветеринарии, и методическим указаниям МУ 1.3.2569-09 «Организация работы лабораторий, использующих методы амплификации

- нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I–IV групп патогенности».
- Температура в помещении лаборатории от 20 до 28 °C, относительная влажность от 15 до 75%.
- Допускать к работе с тест-системой только персонал, обученный молекулярно-биологическим методам диагностики и правилам работы в лаборатории в установленном порядке.
- Лабораторный процесс должен быть однонаправленным. Анализ проводится в отдельных помещениях (зонах). Работу следует начинать в Зоне Экстракции, продолжать в Зоне Амплификации и Детекции. Не возвращать образцы и реагенты в зону, в которой была проведена предыдущая стадия процесса. Все лабораторное оборудование, в том числе дозаторы, штативы, лабораторная посуда, а также все рабочие растворы должны быть строго стационарными. Запрещается переносить их из одного помещения в другое.
- Использовать и менять при каждой операции одноразовые наконечники для автоматических дозаторов с фильтром².
 Одноразовую пластиковую посуду (пробирки, наконечники) необходимо сбрасывать в специальный контейнер, содержащий дезинфицирующее средство, которое может быть использовано для обеззараживания отходов.
- Поверхности столов, а также помещения, в которых проводится постановка ПЦР, до начала и после завершения работ необходимо подвергать ультрафиолетовому облучению в течение 30 мин.
- Тест-система предназначена для одноразового применения для проведения ПЦР-исследования указанного количества проб (см. раздел «Формы комплектации»).
- Тест-система готова к применению согласно данной инструкции. Применять тест-систему строго по назначению.
- Не использовать тест-систему, если нарушена внутренняя упаковка или внешний вид реагента не соответствует описанию.

Форма 1: REF VET-44-FRT(RG,iQ)-K; REF V-3341-1 / VER 05.12.23 / стр. 5 из 29

² Для удаления жидкости с помощью вакуумного отсасывателя используются одноразовые наконечники без фильтра.

- Не использовать тест-систему, если не соблюдались условия транспортирования и хранения согласно инструкции.
- Не использовать тест-систему по истечении срока годности.
- Использовать одноразовые неопудренные перчатки, лабораторные халаты, защищать глаза во время работы с образцами и реагентами. Тщательно вымыть руки по окончании работы. Все операции проводятся только в перчатках для исключения контакта с организмом человека.
- Избегать вдыхания паров, контакта с кожей, глазами и слизистой оболочкой. Вредно при проглатывании. При контакте немедленно промыть пораженное место водой, при необходимости обратиться за медицинской помощью.

При соблюдении условий транспортировки, эксплуатации и хранения риски взрыва и возгорания отсутствуют.

Тест-систему хранить в местах, не доступных для детей.

СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

Неиспользованные реагенты, реагенты с истекшим сроком годности, использованные реагенты, упаковку³, биологический инструменты и предметы, материал, а также материалы, загрязненные биологическим материалом, следует удалять в соответствии с требованиями СанПиН 2.1.3684-21 «Санитарноэпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, организации помещений, общественных проведению И санитарно-противоэпидемических (профилактических) мероприятий».

ВНИМАНИЕ! При удалении отходов после амплификации (пробирок, содержащих продукты ПЦР) недопустимо открывание пробирок и разбрызгивание содержимого, поскольку это может привести к контаминации продуктами ПЦР лабораторной зоны, оборудования и реагентов.

Форма 1: REF VET-44-FRT(RG,iQ)-K; REF V-3341-1 / VER 05.12.23 / стр. 6 из 29

³ Неиспользованные реагенты, реагенты с истекшим сроком годности, использованные реагенты, упаковка относятся к классу опасности медицинских отходов Г.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ И ОБОРУДОВАНИЕ

Взятие исследуемого материала

- 1. Одноразовые полипропиленовые плотно закрывающиеся пробирки объемом от 1,5 до 5 мл с ЭДТА или цитратом натрия (например, Sarstedt AG&Co.KG, Германия, или аналогичные).
- 2. Иглы стерильные для взятия венозной крови (например, Sarstedt AG&Co.KG, Германия, или аналогичные).

Экстракция ДНК из исследуемого материала

- 3. Комплект реагентов для экстракции ДНК «РИБО-преп», АмплиСенс[®] МАГНО-сорб-М.
- 4. Дополнительные материалы и оборудование для экстракции ДНК согласно инструкции к соответствующему комплекту реагентов для экстракции ДНК.

<u>При использовании автоматических станций для экстракции нуклеиновых кислот:</u>

- 5. Автоматическая станция для экстракции НК Auto-Pure 96 (Hangzhou Allsheng Instruments Co., («Ханчжоу Аошенг Инструментс Ко., Лтд.»), Ltd., Китай).
- 6. Комплект реагентов для экстракции ДНК АмплиСенс® МАГНО-сорб-М.
- 7. Набор необходимых расходных материалов к используемой автоматической станции в соответствии с рекомендациями ее производителя.

Амплификация с гибридизационно-флуоресцентной детекцией продуктов амплификации

- 8. Одноразовые полипропиленовые пробирки:
 - а) завинчивающиеся или плотно закрывающиеся пробирки объемом 1,5 мл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные) – для приготовления реакционной смеси;
 - б) тонкостенные пробирки для ПЦР объемом 0,2 мл с выпуклой или плоской оптически прозрачной крышкой или пробирки объемом 0,2 мл в стрипах по 8 шт. с прозрачными крышками (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные) при использовании прибора планшетного типа;
 - в) тонкостенные пробирки для ПЦР объемом 0,2 мл с

- плоской крышкой (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные) при использовании прибора роторного типа.
- 9. Одноразовые наконечники для дозаторов переменного объема с фильтром до 100, до 200 мкл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 10. Штативы для пробирок объемом 0,2 мл (например, Axygen, Inc. («Эксиджен, Инк.»), США, или аналогичные).
- 11.Бокс абактериальной воздушной среды (ПЦР-бокс) (например, «БАВ-ПЦР-«Ламинар-С.», ЗАО «Ламинарные системы», Россия, или аналогичный).
- 12. Центрифуга-вортекс (например, SIA Biosan, Латвия, или аналогичный).
- 13. Автоматические дозаторы переменного объема (например, OOO «Биохит», Россия, или аналогичные).
- 14.Программируемый амплификатор с системой детекции флуоресцентного сигнала в режиме «реального времени», (например, Rotor-Gene 3000/6000 (Corbett Research, Австралия), Rotor-Gene Q (QIAGEN GmbH («Киаген ГмбХ»), Германия), iCycler iQ/ iCycler iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториез, Инк.»), США), СFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториез, Инк.»), США), «ДТпрайм» (ООО «НПО ДНК-Технология», Россия) и другие, рекомендованные Изготовителем).
- 15. Холодильник от 2 до 8 °C с морозильной камерой от минус 24 до минус 16 °C.
- 16.Отдельный халат, шапочка, обувь и одноразовые перчатки.
- 17. Емкость для сброса наконечников.

ПОРЯДОК ОТБОРА И ПОДГОТОВКИ ПРОБ

Материалом для исследования служит цельная кровь.

ВНИМАНИЕ! Вид биологического материала для ПЦР-исследования определяет ветеринарный врач. При выборе биологического материала необходимо руководствоваться целью исследования, знаниями о патогенезе болезни и действующими регламентирующими документами.

Взятие, транспортирование и хранение исследуемого материала

При взятии материала используют отдельные инструменты для каждого животного.

Взятие крови проводится в стерильные пробирки с 3 % раствором ЭДТА из расчета 10:1 (или с цитратом натрия в стандартной концентрации). Закрытую пробирку с кровью несколько раз переворачивают.

Материал доставляют в лабораторию в течение суток, сохраняя при температуре от 2 до 8 °C.

Допускается хранение образцов <u>цельной крови</u> при температуре от 2 до 8 °C – не более 48 часов, замораживание цельный крови не допускается.

Подготовка исследуемого материала к экстракции ДНК

<u>Образцы цельной крови</u> не требуют предварительной подготовки.

ПРОВЕДЕНИЕ ПЦР-ИССЛЕДОВАНИЯ

ПЦР-исследование состоит из следующих этапов:

- экстракция ДНК из исследуемых образцов,
- амплификация ДНК с гибридизационно-флуоресцентной детекцией в режиме «реального времени»,
- анализ и интерпретация результатов.

Экстракция ДНК из исследуемого материала

Для экстракции ДНК используются комплекты реагентов «РИБО-преп», АмплиСенс® МАГНО-сорб-М.

Порядок работы с комплектами реагентов смотрите в инструкции к соответствующему комплекту для экстракции.

Экстракцию ДНК из каждого исследуемого образца необходимо проводить в присутствии внутреннего контрольного образца — **BKO-V**.

Очищенная ДНК может храниться:

- при температуре от 2 до 8 °C − в течение 1 недели;
- при температуре от минус 24 до минус 16 °C в течение года.

Объемы реагентов и образцов при экстракции с помощью комплекта реагентов «РИБО-преп»:

Объем ВКО – 10 мкл в каждую пробирку.

Объем исследуемого образца – 100 мкл.

В пробирку отрицательного контроля экстракции (ОК) внести **100 мкл ОКО**.

Объем элюции – **50 мкл.** Допускается при необходимости увеличение объема элюции до 100 мкл.

Объемы реагентов и образцов при экстракции с помощью комплектов реагентов АмплиСенс® МАГНО-сорб-М с использованием магнитных штативов вручную:

Объем ВКО – 10 мкл в каждую пробирку.

Объем исследуемого образца – 200 мкл.

В пробирку отрицательного контроля экстракции (ОК) внести **200 мкл ОКО**.

Объем элюции – 100 мкл.

Объемы реагентов и образцов при экстракции с помощью комплекта реагентов АмплиСенс® МАГНО-сорб-М с использованием автоматических станций для экстракции нуклеиновых кислот:

Экстракция нуклеиновых кислот проводится с помощью автоматической станции Auto-Pure 96 (Hangzhou Allsheng Instruments Co., Ltd., Китай) в соответствии с инструкцией по ее эксплуатации и с использованием соответствующего протокола экстракции.

Объем ВКО – 10 мкл в каждую пробирку.

Объем исследуемого образца – 200 мкл.

В пробирку отрицательного контроля экстракции (ОК) внести **200 мкл ОКО**.

Объем элюции – **100 мкл**.

Амплификация и детекция продуктов амплификации А. Подготовка проб для проведения ПЦР

Выбор пробирок для проведения ПЦР зависит от используемого амплификатора с системой детекции в режиме «реального времени».

Для внесения в пробирки реагентов, проб ДНК и контрольных образцов используются одноразовые наконечники с фильтрами.

Общий объем реакции – 25 мкл, объем ДНК-пробы – 10 мкл.

Разморозить пробирку с **ПЦР-смесью-1-FRT ВИК**, перемешать на вортексе и сбросить капли с помощью кратковременного центрифугирования.

Для проведения N реакций смешать в отдельной пробирке ПЦР-смесь-1-FRT ВИК, ПЦР-буфер-С, ТаqF-UDG из расчета на каждую реакцию:

- 10 мкл ПЦР-смеси-1-FRT ВИК;
- 5 мкл ПЦР-буфера-С;
- 0,5 мкл TaqF-UDG.

Перемешать смесь на вортексе, осадить кратковременным центрифугированием и внести по **15 мкл** в пробирки для ПЦР.

Используя наконечник с фильтром, в подготовленные пробирки добавить по **10 мкл проб ДНК,** полученных в результате экстракции из исследуемых образцов. **Необходимо избегать попадания сорбента в реакционную смесь**.

Поставить контрольные реакции:

- **а) отрицательный контроль ПЦР (К–)** в пробирку с реакционной смесью внести **10 мкл реагента К–**.
- **б) положительный контроль ПЦР (К+)** в пробирку с реакционной смесью внести **10 мкл ПКО ДНК** *FIV***/ВК**.
- **в) отрицательный контроль экстракции (ОК)** в пробирку с реакционной смесью внести **10 мкл** пробы, экстрагированной из ОКО.

Б. Проведение амплификации с детекцией в режиме «реального времени»

Порядок работы с помощью приборов Rotor-Gene 3000/6000 (Corbett Research, Австралия) и Rotor-Gene Q (QIAGEN GmbH («Киаген ГмбХ»), Германия) смотрите в Приложении 1.

Порядок работы с помощью приборов iCycler iQ и iCycler iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториез, Инк.», США) смотрите в Приложении 2.

Порядок работы с использованием прибора CFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториез, Инк.», США) смотрите в Приложении 3.

Порядок работы с использованием прибора «ДТпрайм» (ООО «НПО ДНК-Технология», Россия) смотрите в Приложении 4.

Интерпретация результатов

ВНИМАНИЕ! Результат ПЦР-исследования не является диагнозом. Оценка результатов исследования проводится ветеринарным врачом в соответствии с целью исследования и действующими регламентирующими документами.

Анализируют кривые накопления флуоресцентного сигнала, свидетельствующего о накоплении продукта амплификации, по двум каналам:

Таблица 4

Канал для флуорофора	FAM	JOE
Продукт амплификации	ДНК ВКО-V	провирусная ДНК вируса иммунодефицита кошек

Результаты интерпретируют на основании наличия (или отсутствия) пересечения кривой флуоресценции S-образной (сигмообразной) формы с установленной на соответствующем уровне пороговой линией, что определяет наличие (или отсутствие) для данной пробы ДНК значения порогового цикла (Ct).

Результаты для контролей этапов экстракции и амплификации должны соответствовать критериям, указанным в табл. 5.

Таблица 5 **Результаты для контролей различных этапов** ПЦР-исследования

Контролируемый этап ПЦР-		Значение порогового цикла (<i>Ct)</i> по каналу для флуорофора		
	исследования	FAM	JOE	
ОК	Экстракция ДНК	≤ 25	отсутствует	
К–	ПЦР	отсутствует	отсутствует	
K+	ПЦР	≤ 25	≤ 25	

При наличии отклонений результатов для контролей от указанных выше интерпретация ряда исследуемых образцов невозможна (см. «Возможные ошибки).

Принцип интерпретации результатов следующий:

Интерпретация результатов анализа исследуемых образцов

Значение порогового цикла (<i>Ct)</i> по каналу для флуорофора		Результат
FAM	JOE	·
≤ 28	отсутствует	провирусная ДНК вируса иммунодефицита кошек НЕ обнаружена
определено или отсутствует	≤ 33	провирусная ДНК вируса иммунодефицита кошек обнаружена
отсутствует или > 28	отсутствует или > 33	Невалидный*
≤ 28	> 33	Сомнительный**

- * В случае получения **невалидного результата** необходимо провести повторное ПЦР-исследование соответствующего исследуемого образца, начиная с этапа экстракции ДНК.
- ** В случае получения **сомнительного результата** необходимо провести повторное ПЦР-исследование соответствующего исследуемого образца, начиная с этапа экстракции. В случае повторения аналогичного результата считать, что в образце обнаружена провирусная ДНК вируса иммунодефицита кошек.

Возможные ошибки:

- контроля ПЦР 1. Для положительного (K+) значение порогового цикла (Ct) по каналу для флуорофора JOE отсутствует или превышает значение, указанное в таблице 5. Невозможна интерпретация результатов для образцов, в обнаружена ДНК анализируемого которых не микроорганизма. Необходимо повторить амплификацию таких образцов, а для образцов, в которых обнаружена ДНК анализируемого микроорганизма, необходимо выполнить действия, указанные в п. 4.
- 2. Для отрицательного контроля экстракции ДНК (ОК) по каналу ЈОЕ определено значение порогового цикла (Сt). Вероятна контаминация лаборатории фрагментами амплификации или кросс-контаминация от пробы к пробе реагентов / исследуемых образцов на каком-либо этапе ПЦР-исследования. Невозможна интерпретация результатов для образцов, в которых обнаружена ДНК анализируемого микроорганизма. Необходимо предпринять меры по выявлению и ликвидации источника контаминации

- и повторить ПЦР-исследование таких образцов, начиная с этапа экстракции ДНК.
- 3. Для отрицательного контроля ПЦР (К-):
 - а) определено значение порогового цикла (Ct) по каналу флуорофора Вероятна JOE. контаминация ДЛЯ амплификации лаборатории продуктами или контаминация от пробы к пробе реагентов / исследуемых ПЦР-исследования. каком-либо этапе образцов на Невозможна интерпретация результатов для образцов, в обнаружена которых ДНК анализируемого Необходимо микроорганизма. предпринять меры источника И ликвидации контаминации повторить амплификацию таких образцов;
 - б) определено значение порогового цикла (Ct) по каналу Вероятна флуорофора FAM. контаминация ДЛЯ амплификации лаборатории продуктами кроссили контаминация от пробы к пробе реагентов / исследуемых ПЦР-исследования. каком-либо этапе образцов на Невозможна интерпретация результатов для образцов, в ДНК обнаружена не анализируемого Необходимо микроорганизма. предпринять меры ПО выявлению И ликвидации источника контаминации повторить амплификацию таких образцов.
- 4. Для исследуемого образца определено значение порогового цикла, при этом на графике флуоресценции (в режиме просмотра необработанных («сырых») данных) отсутствует участок характерного экспоненциального подъема (график представляет собой приблизительно прямую линию). При анализе результатов вручную необходимо проверить правильность выбранного уровня пороговой линии. Если результат получен при правильном уровне пороговой линии, требуется повторно провести амплификацию для этого образца.

СРОК ГОДНОСТИ. УСЛОВИЯ ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

Срок годности. 15 мес. Тест-система с истекшим сроком годности применению не подлежит. Срок годности вскрытых реагентов соответствует сроку годности, указанному на этикетках для невскрытых реагентов.

Транспортирование. Тест-систему транспортировать при температуре от 2 до 8 °C не более 5 сут в термоконтейнерах, содержащих хладоэлементы, всеми видами крытых транспортных средств. Допускается транспортирование при температуре от 2 до 25 °C не более 3 сут.

Хранение.

Форма 1. «ПЦР-комплект» вариант FRT-50 F состоит из двух частей, хранящихся при разных температурах:

- часть 1 (ПКО ДНК *FIV*/ВК, К-, ОКО, ВКО-V) хранить в холодильной камере при температуре от 2 до 8 °C.
- часть 2 (ПЦР-смесь-1-FRT ВИК, ПЦР-буфер-С, TaqF-UDG) хранить в морозильной камере при температуре от минус 24 до минус 16 °C. ПЦР-смесь-1-FRT ВИК хранить в защищенном от света месте.

Температура хранения вскрытых реагентов соответствует температуре хранения, указанной на этикетках для невскрытых реагентов.

Холодильные и морозильные камеры должны обеспечивать регламентированный температурный режим.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие основных параметров и характеристик тест-системы требованиям, указанным в технической и эксплуатационной документации, в течение установленного срока годности при соблюдении всех условий транспортирования, хранения и применения.

Рекламации на качество тест-системы «ВИК» направлять по адресу 111123, г. Москва, ул. Новогиреевская, дом 3A, e-mail: obtk@pcr.ru. Отзывы и предложения о продукции АмплиСенс[®] вы можете оставить, заполнив анкету потребителя на сайте: www.amplisens.ru.

ПРИЛОЖЕНИЕ 1

АМПЛИФИКАЦИЯ С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ» И АНАЛИЗ РЕЗУЛЬТАТОВ С ПОМОЩЬЮ ПРИБОРОВ Rotor-Gene 3000/6000 (Corbett Research, Австралия) и Rotor-Gene Q (QIAGEN GmbH, («Киаген ГмбХ»), Германия)

Для работы с прибором Rotor-Gene 3000 следует использовать программу Rotor-Gene версии 6, с приборами Rotor-Gene 6000 и Rotor-Gene Q – программу Rotor-Gene 6000 или Rotor-Gene Q версии 1.7 (build 67) или выше.

Далее по тексту термины, соответствующие разным версиям приборов и программного обеспечения указаны в следующем порядке: для прибора Rotor-Gene 3000 / для англоязычной версии программы Rotor-Gene 6000/Q.

А. Проведение амплификации и детекции флуоресцентного сигнала

Включить прибор, запустить программу Rotor-Gene.

Поместить подготовленные для проведения ПЦР пробирки в ротор амплификатора, начиная с ячейки номер 1 (ячейки ротора пронумерованы, эти номера используются в дальнейшем для программирования положения проб в амплификаторе), установить ротор в прибор, закрыть крышку. Запрограммировать прибор.

ВНИМАНИЕ! Лунка 1 обязательно должна быть заполнена какой-либо исследуемой пробиркой (*не пустой*).

- Нажать кнопку *New/Hoвый* в основном меню программы.
- Выбрать тип ротора. Поставить отметку в окошке рядом с надписью **No Domed 0.2 ml Tubes/Locking ring attached/Кольцо закреплено**.
- − Нажать кнопку *Next/Далее*.
- Выбрать объем реакционной смеси: Reaction volume/Объем реакции 25 мкл. Для Rotor-Gene 6000 должно быть отмечено окошко 15 μl oil layer volume/15 μL объем масла/воска.
- Нажать кнопку *Next/Далее*.
- В верхней части окна нажать кнопку Edit profile/Редактор профиля.
- Задать следующие параметры эксперимента:

Программа амплификации FIV

Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
Hold/ Удерж. Темп-ры	95	15 мин	-	1
Cycling 1/	95	10 c	-	
Циклирование	60	20 c	-	10
1	72	10 c	-	
Cycling 2/	95	10 c	-	
Cycling 2/ Циклирование	55	20 c	FAM/Green, JOE/Yellow	35
4	72	10 c	-	

- Нажать дважды кнопку ОК/Да.
- кнопку – B нижней части окна нажать Calibrate/Gain Optimisation/Опт.уровня сигн. В открывшемся окне нажать кнопку Calibrate Acquiring/Optimise Acquiring/Oпт. Детекканалов установить параметры обоих Reading/Миним. Сигнал – 5FI и Max Reading/Максим. Сигнал – 10FI. Выбрать функцию: Perform Calibration 1st Acquisition/Perform Optimisation **Before Before** Acquisition/Выполнить оптимизацию при детекции. Окно закрыть, нажав кнопку Close/Закрыть.
- Нажать кнопку Next/Далее, запустить амплификацию кнопкой Start run/Cmapm.
- Дать название эксперимента и сохранить его на диске (в этом файле будут автоматически сохранены результаты данного эксперимента).

В процессе работы амплификатора или по окончании его работы необходимо запрограммировать положение пробирок в роторе. Для этого надо использовать кнопку *Edit samples/Правка образцов* (в нижней правой части основного окна). Все исследуемые образцы и контроли обозначить как *Unknown/Образец*.

Б. Анализ результатов

Анализ полученных результатов проводят вручную, с помощью программного обеспечения прибора, используемого для проведения ПЦР с детекцией в режиме «реального времени».

Анализ результатов по каналу FAM/Green:

– Нажать в меню кнопку *Analysis/Анализ*, выбрать режим

- анализа Quantitation/Количественный, нажать кнопку Cycling A. FAM/Cycling A. Green, Show/Показать.
- Отменить автоматический выбор *Threshold/Порог*.
- В меню основного окна **Quantitation** analysis/Количественный анализ должна быть активирована кнопка **Dynamic tube/Динамич.фон** и **Slope Correct/Koppek. Уклона**.
- В меню окна *More settings/Outlier Removal/Устранение* выбросов установить значение *NTC threshold/Порог Фона* ПФ (NTC) 10%.
- Выбрать линейную шкалу графического изображения результатов, нажав кнопку Linear scale/Линейная шкала, в нижней части окна справа (если эта шкала активна по умолчанию, вместо кнопки Linear scale/Линейная шкала видна кнопка Log scale/Лог.шкала).
- В меню *CT Calculation/Вычисление CT* (в правой части окна) выставить *Threshold/Порог* = 0.05.

В таблице результатов (окно **Quant. Results/Количественные Результаты**) появятся значения **Ct**.

<u>Анализ результатов по каналу JOE/Yellow</u> провести аналогично анализу результатов по каналу FAM/Green в соответствии с настройками, указанными в таблице ниже.

Таблица 8

Канал	Threshold/ Порог	Dynamic tube/ Динамич.фон	Slope Correct/ Коррект. уклона	More Settings/ Outlier Removal/ Устранение выбросов
FAM/Green	0,05	включен	включена	10%
JOE/Yellow	0,1	включен	включена	10%

ПРИЛОЖЕНИЕ 2

АМПЛИФИКАЦИЯ С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ» И АНАЛИЗ РЕЗУЛЬТАТОВ С ПОМОЩЬЮ ПРИБОРОВ iCycler iQ и iCycler iQ5 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториез, Инк.»), США)

А. Проведение амплификации и детекции флуоресцентного сигнала

Включить прибор и блок питания оптической части прибора. Проводить измерения не менее, чем через 30 мин после включения оптической части прибора.

Открыть программу iCycler.

Задать схему планшета – расположение пробирок в модуле и измерение флуоресцентного сигнала:

- Для прибора iCycler iQ5 для создания схемы планшета в окне Selected Plate Setup модуля Workshop нажать кнопку Create New или Edit. Редактировать схему планшета в режиме Whole Plate loading. В опции Select and load Fluorophores задать измерение флуоресцентного сигнала во всех пробирках по каналам FAM и JOE. Задать объем реакции (Sample Volume) 25 мкл, тип крышек (Seal Type), тип пробирок (Vessel Type). Сохранить заданную схему планшета, нажав кнопку Save&Exit Plate Editing.
- Для прибора iCycler iQ отредактировать схему планшета в окне Edit Plate Setup модуля Workshop в опции Samples: Whole Plate Loading задать схему расположения образцов в реакционном модуле и указать имя каждой пробы в окне Sample Identifier. В опции Select and load Fluorophores измерение флуоресцентного сигнала задать пробирках по каналам **FAM** и **JOE**. Сохранить схему планшета, задав имя файла в окне Plate Setup Filename (с расширением .pts) и нажав кнопку Save this plate setup (в экрана). Можно редактировать части использованную ранее схему планшета, для этого в окне Library открыть View Plate Setup, выбрать нужный Plate Setup (файл с расширением pts) и нажать кнопку Edit справа. Отредактированный файл нужно также сохранить перед использованием. Назначить использование данной схемы планшета, нажав кнопку Run with selected protocol. Задать программу амплификации.

Программа амплификации

Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
1	95	15 мин	_	1
	95	10 c		
2	60	25 c	_	10
	72	25 c		
	95	10 c	_	
3	55	25 c	FAM, JOE	35
	72	25 c	_	

- Для прибора iCycler iQ5 в окне Selected Protocol модуля Workshop нажать кнопку Create New или Edit. Задать параметры амплификации и сохранить протокол, нажав кнопку Save&Exit Protocol Editing. При последующих постановках можно выбрать файл с этой программой в блоке Protocol (по умолчанию файлы протоколов сохраняются в папке Users).
- Для прибора iCycler iQ, выбрать опцию Edit Protocol модуля Workshop. Для этого в нижнем окне задать параметры амплификации (количество циклов, время и температуру циклирования), а в окне справа указать шаг считывания флуоресцентного сигнала: Cycle 3 Step 2. Сохранить протокол, задав имя файла в окне Protocol Filename (FIV.tmo) и нажав кнопку Save this protocol (в верхней части экрана). При последующих постановках можно выбрать файл с этой программой в закладке View Protocol в модуле Library. Выбрав или отредактировав нужную программу, назначить ее использование, нажав кнопку Run with selected plate setup.

Поместить предварительно подготовленные для проведения ПЦР пробирки в модуль в соответствии с заданной схемой.

Запустить выполнение выбранной программы с заданной схемой планшета.

Для прибора iCycler iQ5 перед запуском выполнения программы следует проверить правильность выбранного протокола (Selected Protocol) и схемы планшета (Selected Plate Setup). Для запуска нажать кнопку Run. Выбрать для измерения факторов лунок вариант Collect Well Factors from Experimental Plate. Нажать кнопку Begin Run, дать название эксперимента (в этом файле будут автоматически сохранены результаты данного эксперимента) и нажать OK.

Для прибора iCycler iQ перед запуском выполнения программы в окне *Run Prep* следует проверить правильность выбранного имени протокола и схемы планшета. Выбрать для измерения факторов лунок вариант *Experimental Plate* в меню *Select well factor source*. Задать объем реакционной смеси в окне *Sample Volume* – 25 мкл. Для запуска нажать кнопку *Begin Run*, дать название эксперимента (в этом файле будут автоматически сохранены результаты данного эксперимента) и нажать *OK*.

После окончания программы приступить к анализу результатов.

Б. Анализ результатов

- Запустить программу и открыть файл с результатами эксперимента. Для этого:
 - Для прибора iCycler iQ5 выбрать нужный файл с данными анализа в окне Data File модуля Workshop и нажать кнопку Analyze.
 - Для прибора iCycler iQ в модуле **Library** активировать окно **View Post-Run Data**. В окне **Data Files** выбрать нужный файл с данными анализа и нажать кнопку **Analyze Data**.
- Провести анализ результатов по каналам FAM и JOE для каждого канала по отдельности, активируя кнопку с названием соответствующего флуорофора.
- В режиме анализа данных PCR Base Line Subtracted Curve Fit (выбирается по умолчанию) поочередно для каждого канала установить пороговую линию, двигая ее курсором при нажатой левой кнопке мыши, на уровне 5-10 % от максимального уровня флуоресценции. образца К+. При пороговая линия должна пересекать только образные кривые накопления сигнала положительных образцов И контролей участке характерного на экспоненциального подъема флуоресценции, переходящего в линейный подъем и не пересекать базовую линию.

Примечание – Чтобы выделить график образца «К+» (или другого желаемого образца) установить курсор в схеме планшета, либо в таблице результатов.

- Вывести на экран таблицу результатов со значениями *Ct,* нажав кнопку *PCR Quant* (iCycler iQ) или кнопку *Results* (iCycler iQ5).

ПРИЛОЖЕНИЕ 3

АМПЛИФИКАЦИЯ С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ», АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРА CFX96 (Bio-Rad Laboratories, Inc. («Био-Рад Лабораториез, Инк.»), США)

Проведение ПЦР и детекция флуоресцентного сигнала

- Включить прибор и запустить программу Bio-Rad CFX Manager.
- В стартовом окне Startup Wizard необходимо выбрать позицию Create a new Run/Experiment (или в меню File выбрать New и далее Run.../Experiment...). Нажать ОК.
- В окне *Run Setup* выбрать вкладку *Protocol* и нажать кнопку *Create new...*. В появившемся окне *Protocol Editor New* задать параметры амплификации. Задать объем реакционной смеси *Sample Volume* 25 мкл.

Таблица 10 Программа амплификации

Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
1	95	15 мин	_	1
	95	10 c	_	
2	60	25 c	_	10
	72	25 c	_	
	95	10 c	_	
3	55	25 c	FAM, HEX	35
	72	25 c	_	

ВНИМАНИЕ! Для каждого шага этапов циклирования, нажав на кнопку *Step Options*, задать скорость нагревания/охлаждения *Ramp Rate* 2,5 °C/sec (см. рис. ниже). Нажать *OK*.

1 95,0 C for 15:00	
→ 2 95,0 C for 0:10	
Slow Ramp Rate to 2,5 C per second	
3 60,0 C for 0:25	
Slow Ramp Rate to 2,5 C per second	
4 72,0 C for 0:25	
Slow Ramp Rate to 2,5 C per second	
— 5 GOTO 2 , 9 more times	
→ 6 95,0 C for 0:10	
Slow Ramp Rate to 2,5 C per second	
7 55,0 C for 0:25	
+ Plate Read	
Slow Ramp Rate to 2,5 C per second	
8 72,0 C for 0:25	
Slow Ramp Rate to 2,5 C per second	
— 9 GOTO 6 , 34 more times	
END	

- Сохранить протокол: выбрать File и далее Save As в окне Protocol Editor New, ввести имя файла, нажать Сохранить.
- Задать схему планшета. Во вкладке *Plate* нажать кнопку Create new.... В появившемся окне Plate Editor - New задать расположение пробирок в модуле. Нажав кнопку Select Fluorophores, выбрать галочками в колонке Selected флуорофоры: **FAM**, **HEX** и нажать *OK*. В меню *Sample type* выбрать *Unknown* для всех образцов. Затем галочками в колонке **Load** (в правой части окна) измерение флуоресцентного всех образцов сигнала ДЛЯ ПО необходимым каналам. В окне Sample name название образцов, при этом параметр *Load* должен быть отмечен галочкой.
- Сохранить схему планшета: выбрать File и далее Save As в окне Plate Editor New, ввести имя файла, нажать Сохранить.
- Выбрать вкладку Start Run. Открыть крышку прибора, нажав кнопку Open Lid. Поместить реакционные пробирки в ячейки амплификатора в соответствии с предварительно запрограммированной схемой планшета. Закрыть крышку прибора, нажав кнопку Close Lid.

ВНИМАНИЕ! Следите за тем, чтобы на стенках пробирок не оставалось капель, так как падение капли в процессе амплификации может привести к сбою сигнала и усложнить анализ результатов. Не переворачивайте пробирки (стрипы) при установке в прибор.

Запустить выполнение выбранной программы с заданной схемой планшета, нажав на кнопку Start Run, выбрать директорию для сохранения файла постановки, ввести имя файла, нажать Сохранить.

Анализ результатов

- Запустить программу, открыть сохраненный файл с данными анализа. Для этого выбрать в меню *File*, затем *Open* и *Data file* и выбрать необходимый файл.
- В окне **Data Analysis** во вкладке **Quantification** представлены кривые флуоресценции, расположение пробирок в планшете и таблица со значениями пороговых

циклов.

проверить Для каждого канала правильность автоматического выбора пороговой линии. Пороговая линия (Threshold) должна пересекать S-образные только (сигмообразные) кривые накопления сигнала положительных образцов контролей vчастке И на характерного экспоненциального подъема флуоресценции, переходящего в линейный подъем, и не пересекать базовую линию. В случае если это не так, необходимо установить вручную 5-10 % пороговую линию на уровне OT максимального уровня флуоресценции, полученного для образца К+ в последнем цикле амплификации, при том, что флуоресценции К+ показывает характерное экспоненциальное нарастание флуоресцентного сигнала.

Примечание – Чтобы выделить график образца «К+» (или другого желаемого образца), установить курсор в схеме планшета либо в таблице результатов.

ПРИЛОЖЕНИЕ 4

АМПЛИФИКАЦИЯ С ДЕТЕКЦИЕЙ В РЕЖИМЕ «РЕАЛЬНОГО ВРЕМЕНИ» И АНАЛИЗ РЕЗУЛЬТАТОВ ПРИ ПОМОЩИ ПРИБОРА «ДТпрайм» (ООО «НПО ДНК-Технология», Россия)

Проведение ПЦР и детекции флуоресцентного сигнала

- 1. Включить прибор, запустить программу RealTime_PCR v.7.3 или выше, запрограммировать прибор согласно инструкции изготовителя прибора. В стартовом окне необходимо выбрать существующего оператора или добавить нового оператора и выбрать режим *Работа с прибором.*
- 2. В диалоговом окне *Список приборов* выбрать необходимый прибор и нажать кнопку *Подключить*.
- 3. В меню *Тест* выбрать команду *Создать/Редактировать тест*, ввести название нового теста например, «ВИК» и нажать кнопку *ОК*. В появившемся окне *Тест* задать следующие параметры:
 - Тип качественный.
 - Метод Геометрический (Ср).
 - Пробирки отметить галочкой образец, контроль +, контроль –.
 - Контроли: положительный (К+) 1, отрицательный (К–) 1.
 - Объем рабочей смеси в пробирке 25 мкл.
 - **Флуорофоры Fam** ВКО, **Hex** специфика (для версии программы v.7.3.2.2 и выше выбрать **R6G**).
 - Задать программу амплификации. Для этого в окне **Тест** нажать кнопку **Создать новую программу**, задать параметры амплификации и сохранить шаблон, нажав кнопу **ОК**. Ввести имя файла, нажать кнопку **Сохранить**.

Цикл	Температура, °С	Время	Измерение флуоресценции	Количество циклов
1	95	15 мин	_	1
2	95	10 c	_	10
	60	25 c	_	
	72	25 c	_	
3	95	10 c	_	
	55	25 c	Fam, Hex/R6G	35
	72	25 c	-	

- 4. В окне *Тест* нажать кнопку *ОК*.
- 5. Выбрать вкладку *Протокол*. Нажать кнопку *Добавить тест* и в появившемся окне выбрать название «ВИК», указать количество образцов и нажать *ОК*.
- 6. Присвоить имена образцам в графе *Идентификатор* появившейся таблицы. Указать расположение пробирок в рабочем блоке прибора, поставив галочку напротив функции *Свободное заполнение*, сняв предварительно галочку с функции *Автозаполнение*. Нажать кнопку *Применить*.
- 7. В открывшейся вкладке Запуск программы амплификации, указать объем рабочей смеси 25 мкл и нажать кнопку Запуск программы.
- 8. Нажать кнопку *Отвыть блок* и установить пробирки в строгом соответствии с указанным расположением пробирок в рабочем блоке прибора.

ВНИМАНИЕ! Следите за тем, чтобы на стенках пробирок не оставалось капель, так как падение капли в процессе амплификации может привести к сбою сигнала и усложнить анализ результатов. Не переворачивать пробирки (стрипы) при установке в прибор.

9. Последовательно нажать кнопки Закрыть блок и Запуск программы. Сохранить эксперимент. Поставить при необходимости галочку Выключить прибор по завершении амплификации.

Анализ результатов

- 1. Открыть сохраненный файл с данными анализа.
- 2. Указать в выпадающем списке *Тип анализа*: *Сt(Ср) для всех каналов (Мультиплекс* для версии программы v.7.5. и выше)
- 3. Указать в выпадающем списке **Метод**: Геометрический (*Cp*).
- 4. Нажать кнопку **Изменить параметры анализа** выставить:
 - Критерий положительного результата ПЦР 90 %,
 - Величина Threshold 10 StD на участке линейного фитирования
 - *Критерии достоверности результата -* не использовать (по умолчанию галочка в соответствующем

окне отсутствует).

• *Нормализация данных* – не использовать (по умолчанию галочка в соответствующем окне отсутствует).

Нажать кнопку *Применить*.

5. В таблице результатов появятся значения индикаторного цикла (Cp).

СИМВОЛЫ, ИСПОЛЬЗУЕМЫЕ В ПЕЧАТНОЙ ПРОДУКЦИИ

Номер по каталогу

Код партии

Дата изменения

Изготовитель

Дата изготовления

Осторожно!

Содержимого достаточно для проведения п тестов

Использовать до

Предел температуры

Не допускать воздействия солнечного света

Знак обращения на рынке